<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>テーマ</td>
<td>一次元一般拡散過程のハーモニック変換の境界の影響に関する研究</td>
</tr>
<tr>
<td>作者</td>
<td>嶽村 智子</td>
</tr>
<tr>
<td>発行者</td>
<td>人間文化研究科年報 第25号</td>
</tr>
<tr>
<td>発行日</td>
<td>2010-03-31</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10935/1635</td>
</tr>
</tbody>
</table>

なお、この文献は奈良女子大学デジタル情報リポジトリから提供されるものである。
State of boundaries for harmonic transforms of one-dimensional generalized diffusion processes

TAKEMURA Tomoko *

1 Introduction

Let m be a right continuous nondecreasing function on an open interval $I = (l_1, l_2)$, where $-\infty < l_1 < l_2 < \infty$, s be a continuous increasing function on I, and k be a right continuous nondecreasing function on I. We assume that the support of the measure $dm(x)$ on I induced by $m(x)$ is equal to I. For a function u on I, we set $u(l_i) = \lim_{x \to l_i, x \in I} u(x)$ if there exists the limit, for $i = 1, 2$. We set $I^* = I \cup \{x; x = l_i$ with $|m(l_i)| + |s(l_i)| + |k(l_i)| < \infty, i = 1, 2\}$. Let us fix a point $c_0 \in I$ arbitrarily and set

$$J_{\mu, \nu}(x) = \int_{[c_0, x]} d\mu(y) \int_{[c_0, y]} d\nu(z),$$

for $x \in I$, where $d\mu$ and $d\nu$ are Borel measures on I, and the integral $\int_{(a,b]}$ is read as $-\int_{(b,a]}$ if $a > b$. Following [1], we call the boundary l_i to be

- (s, m, k)-regular if $J_{s, m+k}(l_i) < \infty$ and $J_{m+k, s}(l_i) < \infty$,
- (s, m, k)-exit if $J_{s, m+k}(l_i) < \infty$ and $J_{m+k, s}(l_i) = \infty$,
- (s, m, k)-entrance if $J_{s, m+k}(l_i) = \infty$ and $J_{m+k, s}(l_i) < \infty$,
- (s, m, k)-natural if $J_{s, m+k}(l_i) = \infty$ and $J_{m+k, s}(l_i) = \infty$.

We note that

- if l_i is (s, m, k)-regular, $|(m+k)(l_i)| < \infty$ and $|s(l_i)| < \infty$,
- if l_i is (s, m, k)-exit, $|(m+k)(l_i)| = \infty$ and $|s(l_i)| < \infty$,
- if l_i is (s, m, k)-entrance, $|(m+k)(l_i)| < \infty$ and $|s(l_i)| = \infty$,
- if l_i is (s, m, k)-natural, $|(m+k)(l_i)| = \infty$ or $|s(l_i)| = \infty$.

Let $D(\mathcal{G})$ be the space of all functions $u \in L^2(I, m)$ which have continuous representatives u (we use the same symbol) satisfying the following conditions:

i) There exist two constants A, B and a function $h_u \in L^2(I, m)$ such that

$$u(x) = A + Bs(x) + \int_{(c_0, x]} \{s(x) - s(y)\} h_u(y) dm(y)$$

$$+ \int_{(c_0, x]} \{s(x) - s(y)\} u(y) dk(y), \quad x \in I. \quad (1.1)$$

* School of Interdisciplinary Research of Scientific Phenomena and Information

† Research Fellow of the Japan Society for the Promotion of Science
ii) If \(l_i \) is regular, then \(u(l_i) = 0 \) for each \(i = 1, 2 \).

By virtue of (1.1), \(h_u \) is uniquely determined as a function of \(L^2(I, m) \) if it exists. The operator \(G \) from \(D(G) \) into \(L^2(I, m) \) is defined by \(Gu = h_u \), and it is called the one-dimensional generalized diffusion operator with the speed measure \(m \), the scale function \(s \), and the killing measure \(k \) (ODGDO with \((s, m, k) \) for short). In the following, for a measurable functions \(u \) on \(I \), \(D_s u(x) \) stands for the right derivative with respect to \(s(x) \), that is, \(D_s u(x) = \lim_{\varepsilon \to 0} \frac{u(x + \varepsilon) - u(x)}{s(x + \varepsilon) - s(x)} \), provided it exists. It is obvious that \(u \in D(G) \) has the right derivative \(D_s u \) and it satisfies

\[
D_s u(y) - D_s u(x) = \int_{\{x,y\}} G u(z) \, dm(z) + \int_{\{x,y\}} u(z) \, dk(z), \quad x, y \in I.
\]

So we sometimes use the symbol \(Gu = (dD_s u - u dk)/dm \). Following McKean [4] (see also Section 4.11 of [2]), we can define the fundamental solution \(p(t, x, y) \) of the following equation.

\[
\frac{\partial}{\partial t} p(t, x, y) = G p(t, x, y), \quad t > 0, \quad x, y \in I,
\]

where \(G \) is applied to \(x \) or \(y \).

It is known that \(p(t, x, y) \) satisfies the following properties:

\[
0 < p(t, x, y) = p(t, y, x) \text{ is continuous on } I \times I \times (0, \infty),
\]

\[
p(s + t, x, y) = \int_I p(s, z, y) p(t, y, z) \, dm(z), \quad s, t > 0, \quad x, y \in I,
\]

\[
p(t, l_i, y) = 0, \quad t > 0, \quad y \in I, \quad \text{if } l_i \text{ is not entrance},
\]

\[
D_s p(t, l_i, y) = 0, \quad t > 0, \quad y \in I, \quad \text{if } l_i \text{ is entrance},
\]

where \(D_s p(t, x, y) = \lim_{\varepsilon \to 0} \{p(t, x + \varepsilon, y) - p(t, x, y)\} / \{s(x + \varepsilon) - s(x)\} \). It is also known that there exists a one-dimensional generalized diffusion process (ODGDP for brief) \(I = \{X(t) : t \geq 0, \quad P_x : x \in I^*\} \) such that

\[
P_x(X(t) \in E) = \int_E p(t, x, y) \, dm(y), \quad t > 0, \quad x \in I^*, \quad E \in \mathcal{B}(I^*).
\]

By this reason, \(p(t, x, y) \) is sometimes called the transition probability density with respect to \(m \). The state of boundaries, that is, \((s, m, k) \)-regular, exit, entrance, and natural, suggest the behavior of the sample paths of \(I \) having the ODGDO \(G \) with \((s, m, k) \) as the generator (see [2]). For \(\beta \geq 0 \) let \(H_{s,m,k,\beta} \) be the set of all positive functions \(h_\beta \) satisfying

\[
h_\beta(x) = h_\beta(c_o) + D_s h_\beta(c_o) \{s(x) - s(c_o)\}
+ \int_{\{c_o,x\}} \{s(x) - s(y)\} h_\beta(y) \{\beta dm(y) + dk(y)\}, \quad x \in I.
\]

We call \(h_\beta \) a \(\beta \) harmonic function for \(G \). For \(h \in H_{s,m,k,\beta} \), we set

\[
s_h(x) = \int_{\{c_o,x\}} h(y)^{-2} ds(y), \quad (1.2)
\]

\[
m_h(x) = \int_{\{c_o,x\}} h(y)^2 dm(y), \quad (1.3)
\]

\[
p_h(t, x, y) = e^{-\beta t} p(t, x, y) / h(x) h(y).
\]
Let G_h be an ODGDO with $(s_h, m_h, 0)$, where 0 denotes the null measure. Let D_h be an ODGDP with G_h as the generator. Then $p_h(t, x, y)$ is the transition probability density of D_h with respect to m_h. We call D_h a harmonic transform of D. In this paper we study state of boundaries for D_h. Our main result is as follows.

Theorem 1.1 Let $h \in H_{s, m, k, \beta}$ and $i = 1, 2$.

(i) Suppose that l_i is (s, m, k) -regular or exit. If $h(l_i) = 0$, then l_i is $(s_h, m_h, 0)$ -entrance. If $0 < h(l_i) < \infty$, then l_i is $(s_h, m_h, 0)$ -regular or exit according to l_i being (s, m, k) -regular or exit.

(ii) Suppose that l_i is (s, m, k) -entrance. If $0 < h(l_i) < \infty$, then l_i is $(s_h, m_h, 0)$ -entrance. If $h(l_i) = \infty$, then l_i is $(s_h, m_h, 0)$ -regular or exit according to $|m_h(l_i)| < \infty$ or $|m_h(l_i)| = \infty$.

(iii) Suppose that l_i is (s, m, k) -natural. If $h(l_i) = 0$, then l_i is $(s_h, m_h, 0)$ -entrance or natural according to $J_{m_h, s_h}(l_i) < \infty$ or $J_{m_h, s_h}(l_i) = \infty$. If $h(l_i) = \infty$, then l_i is $(s_h, m_h, 0)$ -regular, exit, or natural according to $|m(l_i)| < \infty$, $|m(l_i)| = \infty$ and $J_{s_h, m_h}(l_i) < \infty$, or $|m(l_i)| = \infty$ and $J_{s_h, m_h}(l_i) = \infty$.

The statements of the theorem are tabulated as follows.

<table>
<thead>
<tr>
<th></th>
<th>$h(l_i) = 0$</th>
<th>$h(l_i) \in (0, \infty)$</th>
<th>$h(l_i) = \infty$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s, m, k) -regular</td>
<td>$(s_h, m_h, 0)$ -entrance</td>
<td>$(s_h, m_h, 0)$ -regular</td>
<td>\emptyset</td>
</tr>
<tr>
<td></td>
<td>Ex. 3.1</td>
<td>Ex. 3.2</td>
<td></td>
</tr>
<tr>
<td>(s, m, k) -exit</td>
<td>$(s_h, m_h, 0)$ -entrance</td>
<td>$(s_h, m_h, 0)$ -exit</td>
<td>\emptyset</td>
</tr>
<tr>
<td></td>
<td>Ex. 3.3</td>
<td>Ex. 3.4</td>
<td></td>
</tr>
<tr>
<td>(s, m, k) -entrance</td>
<td>\emptyset</td>
<td>$(s_h, m_h, 0)$ -entrance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ex. 3.5</td>
<td>Ex. 3.5</td>
<td></td>
</tr>
<tr>
<td>(s, m, k) -natural</td>
<td>$(s_h, m_h, 0)$ -entrance</td>
<td>$(s_h, m_h, 0)$ -regular</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if $</td>
<td>m_h(l_i)</td>
<td>< \infty$</td>
</tr>
<tr>
<td></td>
<td>Ex. 3.7</td>
<td>Ex. 3.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$(s_h, m_h, 0)$ -exit</td>
<td>$(s_h, m_h, 0)$ -exit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if $</td>
<td>m_h(l_i)</td>
<td>= \infty$</td>
</tr>
<tr>
<td></td>
<td>Ex. 3.5</td>
<td>Ex. 3.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$(s_h, m_h, 0)$ -natural</td>
<td>$(s_h, m_h, 0)$ -natural</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if $J_{m_h, s_h}(l_i) < \infty$</td>
<td>if $J_{m_h, s_h}(l_i) < \infty$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ex. 3.6</td>
<td>Ex. 3.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if $J_{m_h, s_h}(l_i) = \infty$</td>
<td>if $</td>
<td>m(l_i)</td>
</tr>
<tr>
<td></td>
<td>Ex. 3.4, Ex. 3.5</td>
<td>Ex. 3.5, Ex. 3.6</td>
<td></td>
</tr>
</tbody>
</table>

The symbol \emptyset of the table means that there don't exist any β harmonic functions for G (see Lemma 2.1 below). We exhibit examples for each cases of the table in Section 3. Example 3.1 etc. are abbreviated as Ex.3.1 etc., respectively.

In [3] Maeno treated harmonic transforms different from ours. More precisely, let s and m be the scale function and speed measure on I. Let M^*_β be the set of all positive continuous functions h on I such that h has the right derivative $D_s h$ which is right
continuous and nonincreasing. For \(h \in \mathcal{M}_\alpha \) we consider \(s_h \) and \(m_h \) given by (1.2) and (1.3), respectively. Further set \(k_h(x) = -\int_{(s_h, x]} \delta h \, ds_h(x) \). Let \(\mathcal{G}_h \) be an ODGDO with \((s_h, m_h, k_h)\). She discusses the state of boundaries for \(N \) having the ODGDO \(\mathcal{G}_h \) as the generator. Since \(\mathcal{H}_{s,m,k,\beta} \cap \mathcal{M}_\alpha = \emptyset \) if \(k \neq 0 \) or \(\beta > 0 \), we cannot derive Theorem 1.1 from her results. However there is a relation between our harmonic transform and Maeno’s harmonic transform. We discuss this relation in [5].

2 Proof of main theorem

In this section we prove Theorem 1.1 for \(l_1 \). First we summarize some properties of \(\beta \) harmonic functions.

Lemma 2.1 ([2], [6]) Let \(h \in \mathcal{H}_{s,m,k,\beta} \).

(i) For \(l_1 < x < y < l_2 \),

\[
D_s h(x) \leq \frac{h(y) - h(x)}{s(y) - s(x)} \leq D_s h(y).
\]

(ii) Suppose \(l_1 \) is regular or exit. Then \(0 \leq h(l_1) < \infty \). If \(h(l_1) = 0 \), \(h(x) \leq D_s h(x)(s(x) - s(l_1)) \).

(iii) Suppose \(l_1 \) is entrance. Then \(0 < h(l_1) \leq \infty \). If \(h(l_1) = \infty \), then \(D_s h(l_1) \in [-\infty, 0) \), \(|s_h(l_1)| \leq \infty \), and \(\int_{(l_1, c_0)} h(y) \, dm(y) < \infty \).

(iv) Suppose \(l_1 \) is natural. Then \(h(l_1) = 0 \), or \(h(l_1) = \infty \). If \(h(l_1) = \infty \), \(|s_h(l_1)| < \infty \).

Remark 2.2 Suppose that \(h \in \mathcal{H}_{s,m,k,\beta} \) and \(0 < h(l_1) < \infty \). Then

\[
0 < \lim_{x \downarrow l_1} \frac{s_h(x)}{s(x)} < \infty, \quad 0 < \lim_{x \downarrow l_1} \frac{m_h(x)}{m(x)} < \infty.
\]

The statements of Theorem 1.1 (i) and (ii) corresponding to \(0 < h(l_1) < \infty \) are derived from Remark 2.2. We divide the proof of the theorem into three cases for expect \(0 < h(l_1) < \infty \). In the following we fix \(s, m, k, \beta, \) and \(h \in \mathcal{H}_{s,m,k,\beta} \).

2.1 The case that \(l_1 \) is \((s, m, k)\) -regular or exit

Suppose that \(l_1 \) is \((s, m, k)\) -regular or exit. Then \(0 \leq h(l_1) < \infty \). If \(h(l_1) = 0 \), by means of Lemma 2.1, there is an \(x_0 \in I \) such that

\[
h(x) \leq (s(x) - s(l_1))D_s h(x_0), \quad l_1 < x < x_0.
\]

Therefore

\[
\int_{(l_1, x_0]} h^{-2}(x) \, ds(x) \geq (D_s h(x_0))^{-2} \int_{(l_1, x_0]} \frac{ds(x)}{(s(x) - s(l_1))^2} = \infty.
\]

Hence \(s_h(l_1) = -\infty \). Furthermore

\[
\int_{(l_1, x_0]} h^2(x) \, dm(x) \int_{(x_0, l_1]} h^{-2}(y) \, ds(y) \leq \int_{(l_1, x_0]} dm(x) \int_{(x_0, l_1]} ds(y) < \infty,
\]

which shows that \(l_1 \) is \((s_h, m_h, 0)\) -entrance.
2.2 The case that \(l_1 \) is \((s, m, k)\) -entrance

Suppose that \(l_1 \) is \((s, m, k)\) -entrance. If \(h(x) = \infty \), then we have

\[
\lim_{x \to l_1} \frac{\int_{(l_1, x]} h^{-2}(y) \, ds(y)}{h^{-1}(x)} = \lim_{x \to l_1} \frac{1}{D_s h(x)} = \frac{1}{D_s h(l_1)}.
\]

We note that \(D_s h(l_1) \in [-\infty, 0) \) by means of Lemma 2.1. Hence there are \(x_0 \in I \) and a positive constant \(C \) such that \(\int_{(l_1, x]} h^{-2}(y) \, ds(y) \leq Ch^{-1}(x), \ l_1 < x < x_0 \). Combing this with \(|s_h(l_1)| < \infty \), we find

\[
\int_{(l_1, x_0]} h^{-2}(y) \, ds(y) \int_{(y, x_0]} h^2(x) \, dm(x) = \int_{(l_1, x_0]} h^2(y) \, dm(y) \int_{(l_1, y]} h^{-2}(x) \, ds(x) \\
\leq C \int_{(l_1, c]} h(y) \, dm(y) < \infty.
\]

Thus we have that \(l_1 \) is \((s_h, m_h, 0)\) -regular (resp. -exit) if \(|m_h(l_1)| < \infty \) (resp. \(|m_h(l_1)| = \infty \)).

2.3 The case that \(l_1 \) is \((s, m, k)\) -natural

Suppose that \(l_1 \) is \((s, m, k)\) -natural. Then \(h(l_1) = 0 \) or \(h(l_1) = \infty \).

Suppose that \(h(l_1) = 0 \). If \(s(l_1) = -\infty \), for any \(M > 0 \) there exists an \(x_0 \) such that \(h^{-1}(x) > M, \ l_1 < x < x_0 \). We have

\[
\int_{(l_1, x_0]} h^{-2}(y) \, ds(y) \geq M^2 \int_{(l_1, x_0]} ds(x) = \infty.
\]

Hence we have \(s_h(l_1) = -\infty \). If \(s(l_1) > -\infty \), there exist an \(x_1 \) and a positive constant \(C \) such that \(h(x) \leq C(s(x) - s(l_1)) \) for \(l_1 < x < x_1 \). Therefore

\[
\int_{(l_1, x_1]} h^{-2}(x) \, ds(x) \geq \frac{1}{C} \int_{(l_1, x_1]} \frac{ds(x)}{(s(x) - s(l_1))^2} = \infty,
\]

Then we have \(s_h(l_1) = -\infty \). Thus \(l_1 \) is \((s_h, m_h, 0)\) -entrance or natural according to \(J_{m_h,s_h}(l_1) < \infty \) or \(J_{m_h,s_h}(l_1) = \infty \).

If \(h(l_1) = \infty \), then

\[
\int_{(l_1, c]} h^{-2}(y) \, ds(y) < \infty,
\]

by means of Lemma 2.1. Therefore \(l_1 \) is \((s_h, m_h, 0)\) -regular, exit, or natural according to \(|m_h(l_1)| < \infty, \ |m_h(l_1)| = \infty \) and \(J_{s_h,m_h}(l_1) < \infty, \ |m_h(l_1)| < \infty \) and \(J_{s_h,m_h}(l_1) = \infty \).

3 Examples

In this section we give each examples in Table 1.
Example 3.1 Consider the generator
\[G = x^2(x^2 - 1) \frac{d^2}{dx^2} + 2x^3 \frac{d}{dx} - x(x^2 - 1)^{-1}, \]
on \((1, \infty)\). The scale function, speed measure, and killing measure are given by
\[ds(x) = (x^2 - 1)^{-1} dx, \quad dm(x) = x^{-2} dx, \quad dk(x) = (x^2 - 1)^{-1} dx. \]
The end points 1 and \(\infty\) are \((s, m, k)\)-natural and \((s, m, k)\)-regular, respectively.

Set \(h(x) = (x^2 - 1)^{-\frac{1}{2}} \). \(h(x) \) is a 0 harmonic function for \(G \). We obtain the transformed scale function, the transformed speed measure, and the transformed generator as follows.
\[ds_h(x) = dx, \quad dm_h(x) = x^{-2}(x^2 - 1)^{-1} dx, \quad G_h = x^2(x^2 - 1) \frac{d^2}{dx^2}. \]
Since \(J_{s_h, m_h}(1) = \infty \) and \(J_{m_h, s_h}(1) = \infty \), the end point 1 is \((s_h, m_h, 0)\)-natural. Since \(|s_h(\infty)| = \infty \) and \(J_{m_h, s_h}(\infty) < \infty \), the end point \(\infty\) is \((s_h, m_h, 0)\)-entrance.

Example 3.2 Consider the generator
\[G = e^{\gamma x} \frac{d^2}{dx^2} - \kappa, \]
on \((0, \infty)\), where \(\gamma > 0\) and \(\kappa > 0\). The scale function, speed measure, and killing measure are given by
\[ds(x) = dx, \quad dm(x) = e^{-\gamma x} dx, \quad dk(x) = \kappa e^{-\gamma x} dx. \]
The end points 0 and \(\infty\) are \((s, m, k)\)-regular and \((s, m, k)\)-entrance, respectively.

For \(\lambda \geq 0\), set \(h(x) = K_0 \left(\frac{2\sqrt{\lambda + \kappa}}{\gamma} e^{-\frac{\gamma x}{2}} \right) \). \(h(x) \) is a \(\lambda\) harmonic function for \(G \). We obtain the transformed scale function, the transformed speed measure, and the transformed generator as follows.
\[ds_h(x) = K_0^{-2} \left(\frac{2\sqrt{\lambda + \kappa}}{\gamma} e^{-\frac{\gamma x}{2}} \right) dx, \quad dm_h(x) = K_0^2 \left(\frac{2\sqrt{\lambda + \kappa}}{\gamma} e^{-\frac{\gamma x}{2}} \right) e^{-\gamma x} dx, \]
\[G_h = e^{\gamma x} \frac{d^2}{dx^2} + 2\sqrt{\lambda + \kappa} e^{\frac{\gamma x}{2}} K_0 \left(\frac{2\sqrt{\lambda + \kappa}}{\gamma} e^{-\frac{\gamma x}{2}} \right) \frac{d}{dx}. \]
Since \(|s_h(0)| < \infty\) and \(|m_h(0)| < \infty\), the end point 0 is \((s_h, m_h, 0)\)-regular. Since \(|s_h(\infty)| < \infty\) and \(|m_h(\infty)| < \infty\), the end point \(\infty\) is \((s_h, m_h, 0)\)-regular.

Example 3.3 Consider the generator
\[G = x(x^2 - 1) \frac{d^2}{dx^2} + 2x^3 \frac{d}{dx} - x(x^2 - 1)^{-1}, \]
on \((1, \infty)\). The scale function, speed measure, and killing measure are given by
\[ds(x) = (x^2 - 1)^{-1} dx, \quad dm(x) = x^{-1} dx, \quad dk(x) = (x^2 - 1)^{-1} dx. \]
The end points 1 and \(\infty\) are \((s, m, k)\)-natural and \((s, m, k)\)-exit, respectively.
Set \(h(x) = (x^2 - 1)^{-\frac{1}{2}} \). \(h(x) \) is a 0 harmonic function for \(\mathcal{G} \). We obtain the transformed scale function, the transformed speed measure, and the transformed generator as follows.

\[
ds_h(x) = dx, \quad dm_h(x) = x^{-1}(x^2 - 1)^{-1} \, dx, \quad \mathcal{G}_h = x(x^2 - 1) - \frac{d^2}{dx^2}.
\]

Since \(|m_h(1)| = \infty \) and \(J_{s_h,m_h}(1) = \infty \), the end point 1 is \((s_h, m_h, 0)\)-natural. Since \(|s_h(\infty)| = \infty \) and \(J_{m_h,s_h}(\infty) < \infty \), the end point \(\infty \) is \((s_h, m_h, 0)\)-entrance.

Example 3.4 Consider the generator

\[
\mathcal{G} = x^{\frac{3}{2}} \frac{d^2}{dx^2} + \frac{2x^{\frac{3}{2}}}{(x + 1)(\log(x + 1) + 1)} \frac{d}{dx} - \frac{x^{\frac{3}{2}}}{(x + 1)^2(\log(x + 1) + 1)},
\]
on \((0, \infty)\). The scale function, speed measure, and killing measure are given by

\[
ds_s(x) = (\log(x + 1) + 1)^{-2} \, dx,
\]
\[
dm(x) = (\log(x + 1) + 1)^2 x^{-2} \, dx,
\]
\[
dk(x) = (\log(x + 1) + 1)(x + 1)^{-2} \, dx.
\]
The end points 0 and \(\infty \) are \((s, m, k)\)-exit and \((s, m, k)\)-natural, respectively.

Set \(h(x) = (\log(x + 1) + 1)^{-4} \). \(h(x) \) is a 0 harmonic function for \(\mathcal{G} \). We obtain the transformed scale function, the transformed speed measure, and the transformed generator as follows.

\[
ds_h(x) = dx, \quad dm_h(x) = x^{-2} \, dx, \quad \mathcal{G}_h = x^{\frac{3}{2}} \frac{d^2}{dx^2}.
\]

Since \(|m_h(0)| = \infty \) and \(J_{s_h,m_h}(0) < \infty \), the end point 0 is \((s_h, m_h, 0)\)-exit. Since \(|s_h(\infty)| = \infty \) and \(J_{m_h,s_h}(\infty) = \infty \), the end point \(\infty \) is \((s_h, m_h, 0)\)-natural.

Example 3.5 Consider the generator

\[
\mathcal{G} = \frac{1}{2} \frac{d^2}{dx^2} + \frac{1}{x} \frac{d}{dx} - \gamma,
\]
on \((0, \infty)\), where \(\gamma > 0 \). The scale function, speed measure, and killing measure are given by

\[
ds_s(x) = x^{-1} \, dx, \quad dm(x) = 2x \, dx, \quad dk(x) = 2\gamma x \, dx.
\]
The end points 0 and \(\infty \) are \((s, m, k)\)-entrance and \((s, m, k)\)-natural, respectively.

We consider two harmonic transforms for \(\mathcal{G} \).

For \(\lambda \geq 0 \), set \(\phi(x) = x^{-1} \sinh(x\sqrt{2(\lambda + \gamma)}) \). \(\phi(x) \) is a \(\lambda \) harmonic function for \(\mathcal{G} \). We obtain the transformed scale function, the transformed speed measure, and the transformed generator as follows.

\[
ds_{\phi}(x) = x \sinh^{-2}(x\sqrt{2(\lambda + \gamma)}) \, dx, \quad dm_{\phi}(x) = 2x^{-1} \sinh^2(x\sqrt{2(\lambda + \gamma)}) \, dx, \quad \mathcal{G}_{\phi} = \frac{1}{2} \frac{d^2}{dx^2} + \left(\frac{1}{x} - \frac{1}{x} \sinh(x\sqrt{2(\lambda + \gamma)}) + \tanh^{-1}(x\sqrt{2(\lambda + \gamma)}) \right) \frac{d}{dx}.
\]

Since \(|s_{\phi}(0)| = \infty \) and \(J_{m_{\phi},s_{\phi}}(0) < \infty \), the end point 0 is \((s_{\phi}, m_{\phi}, 0)\)-entrance. Since \(|m_{\phi}(\infty)| = \infty \) and \(J_{s_{\phi},m_{\phi}}(\infty) = \infty \), the end point \(\infty \) is \((s_{\phi}, m_{\phi}, 0)\)-natural.
For $\lambda > 0$, set $\psi(x) = x^{-1}e^{-x^{2/\lambda}}$. $\psi(x)$ is a λ harmonic function for G. We obtain the transformed scale function, the transformed speed measure, and the transformed generator as follows.

$$ds_\psi(x) = xe^{2x\sqrt{2/\lambda}}dx, \quad dm_\psi(x) = 2xe^{-2x\sqrt{2/\lambda}}dx, \quad G_\psi = \frac{1}{2\lambda} \frac{d^2}{dx^2} + \frac{d}{dx}.$$

Since $|m_\psi(0)| = \infty$ and $J_{s_\psi,m_\psi}(0) < \infty$, the end point 0 is $(s_\psi, m_\psi, 0)$ -exit. Since $|s_\psi(\infty)| = \infty$ and $J_{m_\psi,m_\psi}(\infty) = \infty$, the end point ∞ is $(s_\psi, m_\psi, 0)$ -natural.

Example 3.6 Consider the generator

$$G = \frac{1}{2\lambda} \frac{d^2}{dx^2} - \frac{\gamma^2 - 2^{-2}}{2\lambda^2},$$

on $(0, \infty)$, where $|\gamma| > \frac{1}{2}$. The scale function, speed measure, and killing measure are given by

$$ds(x) = dx, \quad dm(x) = 2dx, \quad dk(x) = (\gamma^2 - 2^{-2})x^{-2}dx.$$

The end points 0 and ∞ are (s, m, k) -natural.

We consider two harmonic transforms for G.

For $\lambda > 0$, set $\phi(x) = \sqrt{2/\lambda} I_{s_\lambda}(x\sqrt{2})$. $\phi(x)$ is a λ harmonic function for G. We obtain the transformed scale function, the transformed speed measure, and the transformed generator as follows.

$$ds_\phi(x) = x^{-1}I_{s_\lambda}^{-2}(x\sqrt{2})dx, \quad dm_\phi(x) = 2xI_{s_\lambda}^2(x\sqrt{2})dx,$$

$$G_\phi = \frac{1}{2\lambda} \frac{d^2}{dx^2} + \left(\frac{1}{2} \frac{\gamma - 2^{-2}}{2\lambda^2} + I_{s_\lambda+1}(x\sqrt{2}) \right) \frac{d}{dx}.$$

Since $|s_\phi(0)| = \infty$ and $J_{m_\phi,s_\phi}(0) < \infty$, the end point 0 is $(s_\phi, m_\phi, 0)$ -entrance. Since $|m_\phi(\infty)| = \infty$ and $J_{s_\phi,m_\phi}(\infty) = \infty$, the end point ∞ is $(s_\phi, m_\phi, 0)$ -natural.

For $\lambda > 0$ set $\psi(x) = \sqrt{2} K_{s_\lambda}(x\sqrt{2})$. $\psi(x)$ is a λ harmonic function for G. We obtain the transformed scale function and the transformed speed measure as follows.

$$ds_\phi(x) = x^{-1}K_{s_\lambda}^{-2}(x\sqrt{2})dx, \quad dm_\phi(x) = 2xK_{s_\lambda}^2(x\sqrt{2})dx,$$

$$G_\phi = \frac{1}{2\lambda} \frac{d^2}{dx^2} + \left(\frac{1}{2} \frac{\gamma - 2^{-2}}{2\lambda^2} + K_{s_\lambda+1}(x\sqrt{2}) \right) \frac{d}{dx}.$$

Since $|m_\phi(0)| = \infty$ and $J_{s_\phi,m_\phi}(0) < \infty$, the end point 0 is $(s_\phi, m_\phi, 0)$ -exit. Since $|s_\phi(\infty)| = \infty$ and $J_{m_\phi,s_\phi}(\infty) = \infty$, the end point ∞ is $(s_\phi, m_\phi, 0)$ -natural.

Example 3.7 Consider the generator

$$G = \frac{x^4}{2} \frac{d^2}{dx^2} + \frac{x^3}{2} \frac{d}{dx} - \frac{1}{8} x^2,$$

on $(0, \infty)$. The scale function, speed measure, and killing measure are given by

$$ds(x) = x^{-1}dx, \quad dm(x) = 2x^{-3}dx, \quad dk(x) = \frac{1}{4} x^{-1}dx.$$
The end points 0 and ∞ are \((s, m, k)\)-natural.

Set \(h(x) = x^{\frac{3}{2}}\). \(h(x)\) is a 0 harmonic function for \(\mathcal{G}\). We obtain the transformed scale function, the transformed speed measure, and the transformed generator as follows.

\[
\begin{align*}
 ds_h(x) &= x^{-2} \, dx, \\
 dm_h(x) &= 2x^{-2} \, dx, \\
 G_h &= \frac{x^4}{2} \frac{d^2}{dx^2} + x^3 \frac{d}{dx}.
\end{align*}
\]

Since \(|s_h(0)| = \infty\) and \(|m_h(0)| = \infty\), the end point 0 is \((s_h, m_h, 0)\)-natural. Since \(|s_h(\infty)| < \infty\) and \(|m_h(\infty)| < \infty\), the end point \(\infty\) is \((s_h, m_h, 0)\)-regular.

References

State of boundaries for harmonic transforms of one-dimensional generalized diffusion processes

TAKEMURA Tomoko

We consider a one-dimensional generalized diffusion operator \mathcal{G} represented by triplet of Borel measures and a harmonic transform \mathcal{G}_h of \mathcal{G}, where h is a harmonic function for \mathcal{G}. Specially we treat an operator with killing measure which is not null measure. We consider the state of boundaries for the one-dimensional generalized diffusion process \mathcal{D}_h with \mathcal{G}_h as the generator. State of boundaries for \mathcal{D}_h may be different from those for \mathcal{D} which is a one-dimensional generalized process with \mathcal{G} as the generator. We characterize the state of boundaries for \mathcal{D}_h in terms of the Borel measures and a harmonic function for \mathcal{G}. After we prove our main theorem, we give some examples.