Elementary solutions of Bessel processes with boundary conditions

TAKEMURA Tomoko *

1 Introduction

Let L_\ast be the diffusion operator on an interval $I = (l_1, l_2)$, $0 < l_1 < l_2 \leq \infty$, defined by

$$L_\ast = \frac{1}{2} \left(\frac{d^2}{dx^2} + \frac{1}{x} \frac{d}{dx} \right),$$

which is the generator of a Bessel process. It is well known that, if $l_1 = 0$ [resp. $l_2 = \infty$], it is entrance [resp. natural] in the sense of Feller[1]. If $0 < l_i < \infty$ $(i = 1, 2)$, then l_i is regular in the same sense as above. Therefore a boundary condition must be posed at l_i. In this paper we consider three kinds of boundary conditions, that is, absorbing, reflecting, and elastic boundary conditions.

Let $p_{(l_1, l_2)}^{(\alpha_1, \alpha_2)}(t, x, y)$ be the elementary solution of the equation

$$\frac{\partial u(t, x)}{\partial t} = L_\ast u(t, x), \quad t > 0, \ x \in I,$$

in the sense of McKean[5], where $\alpha_i \in \{A, R, L, E, N\}, i = 1, 2,$ and α_1 and α_2 denote state of boundaries l_1 and l_2, respectively, that is, $\alpha_i = A$ means that l_i is regular and absorbing, $\alpha_i = R$ means that l_i is regular and reflecting, $\alpha_i = L$ means that l_i is regular and elastic, and further $\alpha_i = E$ means that l_i is entrance (and hence $i = 1$ and $l_1 = 0$), $\alpha_i = N$ means that l_i is natural (and hence $i = 2$ and $l_2 = \infty$).

The aim of this paper is to give explicit spectral representations of $p_{(l_1, l_2)}^{(\alpha_1, \alpha_2)}(t, x, y)$ for $\alpha_i \in \{A, R, L, E, N\}, i = 1, 2$. In the next section we state our results. In order to show them, we follow the same argument as in [4], [5], [6], [9], [10], which is summarized in Sect. 3. Sect. 4 is devoted to their proofs.

2 Main results

Let $I = (l, r), dm$ be a nonnegative Borel measure on I, which is finite on each compact set of I, and s be a continuous increasing function on I. For an arbitrarily fixed point $c \in I$, we set $m(x) = m((c, x])$, $m(l) = m(+(c) \in [-\infty, 0]$, $m(l) = m(l-) \in [0, \infty]$, $s(l) = s(l) \in [-\infty, \infty]$ and $s(r) = s(r-) \in (-\infty, \infty]$. For a function f on I, $D_s f$ stands for the right derivative of f with respect to s if it exists, that is, $D_s f(x) = \lim_{\epsilon \to 0}(f(x + \epsilon) - f(x))/\{s(x + \epsilon) - s(x)\}$. We set

$$I^* = I \cup \{x; x = l \text{ with } |s(l)| + |m(l)| < \infty \text{ or } x = r \text{ with } |s(r)| + |m(r)| < \infty\},$$

* School of Interdisciplinary Research of Scientific Phenomena and Information
\[I_*(m) = \{ x \in I; m(x_1) < m(x_2) \text{ for } l < x_1 < x < x_2 < r\}, \]
\[I_*(m) = I_*(m) \cup \{ x; x = l \text{ with } |s(l)| + |m(l)| < \infty \]
\[\text{or } x = r \text{ with } |s(r)| + |m(r)| < \infty \} \]

Throughout this paper we assume that
\[I(m) \neq \emptyset, \quad \inf I_*(m) = l, \quad \sup I_*(m) = r. \]

Let \(C_b(E) \) be the set of all bounded continuous function on \(E \), where \(E \) is a Borel set. Let \(D(L) \) be the space of all functions \(u \in C_b(I^*) \) for which there exists a function \(f \in C_b(I_*(m)) \) satisfying the following conditions.

\((C.1) \) There are two constants \(A_1, A_2 \) such that
\[u(x) = A_1 + A_2 \{ s(x) - s(c) \} + \int_{(c, x]} \{ s(x) - s(y) \} f(y) \, dm(y), \quad x \in I. \]

\((C.2) \) If \(|s(l)| + |m(l)| < \infty \), then
\[\theta_1 u(l) - \theta_2 D_s u(l+) = 0, \]
where \(\theta_1, \theta_2 \) are nonnegative numbers satisfying \(\theta_1 + \theta_2 = 1 \).

\((C.3) \) If \(|s(r)| + |m(r)| < \infty \), then
\[\theta_1 u(r) + \theta_2 D_s u(r-) = 0, \]
where \(\theta_1, \theta_2 \) are nonnegative numbers satisfying \(\theta_1 + \theta_2 = 1 \).

\((3) \) with \(\theta_2 = 0 \) [resp. (4) with \(\theta_2 = 0 \)] is called the absorbing boundary condition at \(l \) [resp. \(r \)]. \((3) \) with \(\theta_1 > 0 \) and \(\theta_2 > 0 \) [resp. (4) with \(\theta_1 > 0 \) and \(\theta_2 > 0 \)] is called the elastic boundary condition at \(l \) [resp. \(r \)]. \((3) \) with \(\theta_1 = 0 \) [resp. (4) with \(\theta_1 = 0 \)] is called the reflecting boundary condition at \(l \) [resp. \(r \)]. \(|s(l)| + |m(l)| < \infty \) [resp. \(|s(r)| + |m(r)| < \infty \)] implies that \(l \) [resp. \(r \)] is regular in the sense of Feller [1]. In the next section we precisely state the classification of boundaries due to Feller. The operator \(L \) is defined by the mapping from \(u \in D(L) \) to \(f \in C_b(I_*(m)) \). \(m \) and \(s \) are called the speed measure and the scale function for \(C \), respectively.

Let \(\mathbb{D} = \{ X(t); t \geq 0, P_x; x \in I_* \} \) be a generalized diffusion process whose generator is given by \(L \). Then it is known that there exists the transition probability density \(p(t, x, y) \) such that
\[P_x(X(t) \in E) = \int_E p(t, x, y) \, dm(y), \]
for \(t > 0, x \in I_*(m), E \in B(I_*(m)), \) where \(B(E) \) stands for the set of all Borel sets of \(E \) ([3]). The function \(p(t, x, y) \) is the elementary solution of the equation (2) with \(L \) in place of \(L_* \). Note that \(p(t, x, y) = p(t, y, x) \) and \(p(t, x; y) \) is positive and continuous for \(t > 0, x, y \in I \).
Now we state our result. We go back to the diffusion operator \(L_* \) on \((l_1, l_2)\) defined by (1). It is easy to see that the scale function \(s_* \) and the speed measure \(m_* \) for \(L_* \) are given by

\[
s_*(x) = C^{-1} \log x, \quad dm_*(x) = 2C x \, dx,
\]

where \(C \) is a positive constant. We may set \(C = 1 \) without loss of generality. Our results are represented by means of Bessel functions \(J_\nu(x) \), \(N_\nu(x) \) and modified Bessel functions \(I_\nu \), \(K_\nu \) with \(\nu = 0, 1 \), which are given as follows. For \(x > 0 \),

\[
J_\nu(x) = \left(\frac{x}{2} \right)^\nu \sum_{n=0}^{\infty} \frac{(-1)^n (x/2)^{2n}}{n! \Gamma(\nu + n + 1)},
\]

\[
N_\nu(x) = 2\pi J_\nu(x) \left(\gamma + \log \frac{x}{2} \right)
\]

\[
- \frac{1}{\pi} \left(\frac{x}{2} \right)^\nu \sum_{n=0}^{\infty} \frac{(-1)^n (x/2)^{2n}}{n! \Gamma(\nu + n + 1)} \left[\sum_{m=1}^{n \nu + \nu + 1} \frac{1}{m} \right]
\]

\[
I_\nu(x) = \left(\frac{x}{2} \right)^\nu \sum_{n=0}^{\infty} \frac{(-1)^n (x/2)^{2n}}{n! \Gamma(\nu + n + 1)},
\]

\[
K_\nu(x) = (-1)^\nu + 1 I_\nu(x) \left(\gamma + \log \frac{x}{2} \right)
\]

\[
+ \frac{(-1)^\nu}{2} \sum_{n=0}^{\infty} \frac{(-x/2)^{2n}}{n! (\nu + n)!} \left[\sum_{m=1}^{n \nu + \nu + 1} \frac{1}{m} \right]
\]

\[
+ \frac{1}{2} \sum_{r=1}^{\nu} (-1)^r \frac{(-x/2)^{2n}}{r!} \left(\frac{x}{2} \right)^{2r} \nu,
\]

where \(\gamma \) is Euler's constant and \(\gamma = 0.57721 \ldots \).

It is well known that the elementary solution \(p_{(0, \infty)}^{EN}(t, x, y) \) is given by

\[
p_{(0, \infty)}^{EN}(t, x, y) = \frac{1}{2\sqrt{\pi t}} e^{-(x^2+y^2)/2t} I_0(xy/t)
\]

\[
= \frac{1}{2} \int_0^\infty e^{-\lambda} J_0(\sqrt{2\lambda x}) J_0(\sqrt{2\lambda y}) \, d\lambda.
\]

First we consider the case that \(l_1 = 0 \) and \(l_2 = a \in (0, \infty) \).

PROPOSITION 1. Let \(l_1 = 0 \) and \(l_2 = a \in (0, \infty) \). Assume the boundary condition (4) with \(r, \theta_1^r \) and \(\theta_2^r \) replaced by \(a, \theta_1 \) and \(\theta_2 \), respectively. Then \(p^{EA}(t, x, y) \) is given by

\[
p_{(0, a)}^{EA}(t, x, y) = \frac{n^2}{4} \sum_{\zeta \in \Gamma(\theta_1, \theta_2)} \zeta^2 \left(\theta_1 N_0(\zeta a) - \zeta a \theta_2 N_1(\zeta a) \right)^2 \frac{\theta_1^2 + \zeta^2 a^2 \theta_2^2}{\theta_1^2 + \zeta^2 a^2 \theta_2^2} e^{-\zeta^2 t/2} J_0(\zeta x) J_0(\zeta y),
\]
where $\alpha = A$ or L or R; $\theta_2 = 0$ if $\alpha = A; \theta_1 = 0$ if $\alpha = R$; $K(\theta_1, \theta_2) = \{\zeta \in [0, \infty); \theta_1 J_0(\zeta a) + \theta_2 J_1(\zeta a)\}$.

We note the formula (6) with $a = 1$ and $\theta_2 = 0$ is given in Sect. 5 of [2].

We next consider the case that $l_1 = a \in (0, \infty)$ and $l_2 = \infty$. In this case the spectrum only consists of continuous one. Let

\begin{align}
F(\lambda; \xi; \eta) &= N_0(\sqrt{2\lambda \xi}) J_1(\sqrt{2\lambda \eta}) - J_0(\sqrt{2\lambda \xi}) N_1(\sqrt{2\lambda \eta}), \quad (7) \\
G_\nu(\lambda; \xi; \eta) &= J_\nu(\sqrt{2\lambda \xi}) N_\nu(\sqrt{2\lambda \eta}) - N_\nu(\sqrt{2\lambda \xi}) J_\nu(\sqrt{2\lambda \eta}), \quad (8)
\end{align}

for $\lambda, \xi, \eta \in (0, \infty)$ and $\nu = 0, 1$.

PROPOSITION 2. Let $l_1 = a \in (0, \infty)$ and $l_2 = \infty$. Assume the boundary condition (3) with a, θ_1, and θ_2 in place of 1, θ_1', and θ_2', respectively. Then $p_{(a, \infty)}^{N}(t, x, y)$ is given by

\begin{equation}
p_{(a, \infty)}^{N}(t, x, y) = \int_0^\infty e^{-\lambda t} \phi_{(a, \infty)}^{N}(x, \lambda) \phi_{(a, \infty)}^{N}(y, \lambda) \sigma_{(a, \infty)}(\lambda) \, d\lambda,
\end{equation}

where $\alpha = A$ or L or R; $\theta_2 = 0$ if $\alpha = A; \theta_1 = 0$ if $\alpha = R$.

\begin{align}
\phi_{(a, \infty)}^{N}(x, \lambda) &= \frac{\pi}{2} \left\{ \theta_1 G_0(\lambda; a; x) + \theta_2 \sqrt{2\lambda a} F(\lambda; x; a) \right\}, \\
\sigma_{(a, \infty)}(\lambda) &= \left[\left\{ \theta_1 N_0(\sqrt{2\lambda a}) + \theta_2 \sqrt{2\lambda a} N_1(\sqrt{2\lambda a}) \right\}^2 \\
&\quad + \left\{ \theta_1 J_0(\sqrt{2\lambda a}) + \theta_2 \sqrt{2\lambda a} J_1(\sqrt{2\lambda a}) \right\}^2 \right]^{-1}.
\end{align}

We finally consider the case that $l_1 = a \in (0, \infty)$ and $l_2 = b \in (0, \infty)$.

PROPOSITION 3. Let $l_1 = a \in (0, \infty)$ and $l_2 = b \in (0, \infty)$. Assume that the boundary condition (3) with a, θ_1, and θ_2 in place of 1, θ_1', and θ_2', and the boundary condition (4) with b, θ_1^b and θ_2^b in place of r, θ_1^r and θ_2^r. Then $p_{(a, b)}^{\alpha}(t, x, y)$ is given by

\begin{equation}
p_{(a, b)}^{\alpha}(t, x, y) = \sum_{\zeta \in \{\theta_1^a, \theta_2^a, \theta_1^b, \theta_2^b\}} e^{-\zeta t} \phi_{(a, b)}^{\alpha}(x, \zeta) \phi_{(a, b)}^{\alpha}(y, \zeta) \sigma_{(a, b)}^\alpha(\zeta),
\end{equation}

where

\begin{align}
\phi_{(a, b)}^{\alpha}(x, \zeta) &= \frac{\theta_2^\alpha}{\theta_1^\alpha} \sqrt{2\zeta a \pi} F(\zeta; x; a) + \frac{\pi}{2} G_0(\zeta; a; x), \quad \text{if } \alpha = A \text{ or } L, \\
\phi_{(a, b)}^{R\beta}(x, \zeta) &= \sqrt{2\zeta a \pi} F(\zeta; x; a), \\
\sigma_{(a, b)}^\alpha(\zeta) &= \left[\frac{1}{2\zeta} - \left(\frac{\theta_2^a}{\theta_1^a} \right)^2 \right]^{-1} \\
&\quad + \frac{\left\{ \theta_1^b \theta_2^\alpha \right\}^2 + 2 \left(\theta_2^b \right)^2 \theta_1^b \theta_2^\alpha F(\zeta; a; b) + \theta_2^b \sqrt{2\zeta a} G_1(\zeta; a; b)}{2\lambda a \theta_1^a \theta_2^\alpha} \theta_1^b F(\zeta; b; a) - \theta_2^b \sqrt{2\zeta b} G_1(\zeta; a; b)}^{-1} \quad \text{if } \alpha = A \text{ or } L.
\[
\sigma^{R\beta}_{(a,b)}(\zeta) = \left[-a^2 + ab \theta^2_1 \pi G_1(\zeta; a; b) + \theta^2_2 \sqrt{2\zeta} b F(\zeta; a; b) \right]^{-1},
\]
\[
L(\theta_1^0, \theta_2^0, \theta_1^0, \theta_2^0) = \left\{ \zeta \in [0, \infty); \theta_2^0 \left[\theta_1^0 \sqrt{2\zeta} a F(\zeta; b; a) - 2\theta_2^0 ab \zeta G_1(\zeta; a; b) \right] \right\}.
\]

The following result is a direct consequence of Propositions 1, 2 and 3.

COROLLARY 4. The following formulae hold true.

\[
\lim_{a \to 0} p^{AN}_{(a, \infty)}(t, x, y) = p^{EN}_{(0, \infty)}(t, x, y).
\]
\[
\lim_{a \to 0} p^{\alpha\beta}_{(a, b)}(t, x, y) = p^{E\beta}_{(0, b)}(t, x, y),
\]

where \(\alpha, \beta \in \{A, L, R\} \).

This result is also obtained by using a convergence theorem on a sequence of elementary solutions due to Ogura [7].

3 Preliminaries

In this section we summarize some facts on elementary solutions, which are discussed in [3], [4], [5], [6], [9], [10], etc. Let \(\mathcal{L} \) be the operator defined at the beginning of the preceding section. Let \(m \) and \(s \) be the speed measure and the scale function for \(\mathcal{L} \), respectively. We introduce the following two quantities.

\[
J_t^{l, \nu} = \int_{(l, r]} dv(x) \int_{[x, c]} d\mu(y),
\]
\[
J^r_{\mu, \nu} = \int_{[l, r]} dv(x) \int_{[x, c]} d\mu(y),
\]

where \(d\mu \) and \(dv \) are Borel measure on \(I = (l, r) \) and \(c \in I_*(m) \). We note that \(J_t^{l, \nu} \) [resp. \(J^r_{\mu, \nu} \)] is finite for some \(c \in I_*(m) \) if and only if \(J_t^{l, \nu} \) [resp. \(J^r_{\mu, \nu} \)] is finite for each \(c \in I_*(m) \). For \(a = l, r \), \(a \) is called to be

- **regular** if \(J_m^a < \infty, J_s^a < \infty \),
- **exist** if \(J_m^a = \infty, J_s^a < \infty \),
- **entrance** if \(J_m^a < \infty, J_s^a = \infty \),
- **natural** if \(J_m^a = \infty, J_s^a = \infty \).

It is easy to see that, for each \(a = l, r \),

\[
|m(a)| + |s(a)| < \infty \quad \text{if } a \text{ is regular},
\]
\[
|m(a)| = \infty, |s(a)| < \infty \quad \text{if } a \text{ is exist},
\]
\[
|m(a)| < \infty, |s(a)| = \infty \quad \text{if } a \text{ is entrance},
\]
\[
|m(a)| = \infty, |s(a)| = \infty \quad \text{if } a \text{ is natural}.
\]
In the rest of this section we assume that \(l \) is regular. We define the elementary solution \(p(t, x, y) \) of the generalized diffusion equation (2) with \(L \) replaced by \(L \).

Here and hereafter we use the conventions \(1/\infty = 0 \) and \(\pm a/0 = \pm \infty \) for a positive constant \(a \). We put

\[
\tilde{r} = \begin{cases}
 r & \text{if } |m(r)| + |s(r)| = \infty, \\
 r + \theta_2/\theta_1 & \text{if } |m(r)| + |s(r)| < \infty,
\end{cases}
\]

\[
m(x) = \begin{cases}
 m(l), & l \leq x < \tilde{l}, \\
 m(x), & \tilde{l} \leq x < r, \\
 m(r), & r \leq x < \tilde{r}, \\
 \infty, & \tilde{r} \leq x,
\end{cases}
\]

\[S_m = (\tilde{l}, \tilde{r}).\]

3.1 The case that \(\tilde{l} > -\infty \).

We note that \(\tilde{l} > -\infty \) implies that \(l \) is absorbing or elastic with \(\theta_l^l > 0 \). Let \(\varphi_i(x, \alpha), i = 1, 2, \alpha \in \mathbb{C}, \) be the solutions of the integral equations

\[
\varphi_1(x, \alpha) = 1 + \alpha \int_{(1, x]} \{s(x) - s(y)\} \varphi_1(y, \alpha) \, dm(y), \quad x \in S_m,
\]

\[
\varphi_2(x, \alpha) = s(x) - s(\tilde{l}) + \alpha \{s(x) - s(y)\} \varphi_2(y, \alpha) \, dm(y), \quad x \in S_m.
\]

Then for each \(\alpha > 0 \), there exists the limit

\[
k(\alpha) = \lim_{\tilde{x} \to x} (\alpha) = \varphi_2(x, \alpha)/\varphi_1(x, \alpha).
\]

The function \(k(\alpha) \) can be analytically continued to \(\mathbb{C} \setminus (-\infty, 0] \). The spectral measure \(\sigma_0 \) is defined by

\[
\sigma_0([\lambda_1, \lambda_2]) = -\lim_{\epsilon \to 0} \frac{1}{\pi} \int_{\lambda_1}^{\lambda_2} \frac{1}{k(-\lambda - \sqrt{-1} \epsilon)} \, d\lambda,
\]

for all continuity points \(\lambda_1 \) and \(\lambda_2 \) of \(\sigma_0 (\lambda_1 < \lambda_2) \). We define the elementary solution of the generalized diffusion equation (2) by

\[
p(t, x, y) = \int_{(0, \infty)} e^{-\lambda t} \varphi_2(x, -\lambda) \varphi_2(y, -\lambda) \sigma_0(d\lambda),
\]

for \(t > 0, \ x, y \in S_m. \)
3.2 The case that \(\dot{t} = -\infty \).

This is the case that \(l \) is reflecting. Let \(\psi_i(x, \alpha), i = 1, 2, \alpha \in \mathbb{C} \), be the solutions of the integral equations

\[
\psi_1(x, \alpha) = 1 + \alpha \int_{(l, x]} \{ s(x) - s(y) \} \psi_1(y, \alpha) \, dm(y), \quad x \in S_m, \tag{15}
\]

\[
\psi_2(x, \alpha) = s(x) - s(l) + \alpha \int_{(l, x]} \{ s(x) - s(y) \} \psi_2(y, \lambda) \, dm(y), \quad x \in S_m. \tag{16}
\]

Then for each \(\alpha > 0 \), there exists the limit

\[
h(\alpha) = \lim_{x \uparrow x} \psi_2(x, \alpha) / \psi_1(x, \alpha). \tag{17}
\]

The function \(h(\alpha) \) can be analytically continued to \(\mathbb{C} \setminus (-\infty, 0] \). The spectral measure \(\sigma^0 \) is defined by

\[
\sigma^0(\lambda_1, \lambda_2) = \lim_{\epsilon \downarrow 0} \frac{1}{\pi} \int_{\lambda_1}^{\lambda_2} \Im h(-\lambda - \sqrt{-1} \epsilon) \, d\lambda,
\]

for all continuity points \(\lambda_1 \) and \(\lambda_2 \) of \(\sigma^0(\lambda_1 < \lambda_2) \). We define the elementary solution of the generalized diffusion equation (2) by

\[
p(t, x, y) = \int_{[0, \infty)} e^{-\lambda t} \psi_1(x, -\lambda) \psi_1(y, -\lambda) \sigma^0(d\lambda), \tag{18}
\]

for \(t > 0, x, y \in S_m \).

4 Spectral representations of elementary solutions

In this section we prove Propositions 1, 2 and 3. Throughout this section, we set

\[
\Phi_a(x, \alpha) = \sqrt{2\alpha a} \{ K_1(\sqrt{2\alpha a}) I_0(\sqrt{2\alpha x}) + I_1(\sqrt{2\alpha a}) K_0(\sqrt{2\alpha x}) \}, \tag{19}
\]

\[
\Phi_a(x, -\alpha) = \frac{\sqrt{2\alpha a \pi}}{2} F(\alpha; x; a), \tag{20}
\]

\[
\Psi_a(x, \alpha) = K_0(\sqrt{2\alpha a}) I_0(\sqrt{2\alpha x}) - I_0(\sqrt{2\alpha a}) K_0(\sqrt{2\alpha x}), \tag{21}
\]

\[
\Psi_a(x, -\alpha) = -\pi G_0(\alpha; x) \tag{22}
\]

for \(x > 0 \) and \(\alpha > 0 \), where \(a \) is a positive number. It is easy to see that

\[
\Phi_a(a, \alpha) = 1, \quad \frac{\partial}{\partial x} \Phi_a(x, \alpha) \big|_{x=a} = 0,
\]

\[
\Psi_a(a, \alpha) = 0, \quad \frac{\partial}{\partial x} \Psi_a(x, \alpha) \big|_{x=a} = \frac{1}{a}.
\]
4.1 The Case that \(l_1 = 0 \) and \(l_2 = a \in (0, \infty) \).

We prove Proposition 1. Then \(a \) is regular, and satisfies the boundary condition (4) with \(r = a, \theta_1^r = \theta_1 \) and \(\theta_2^r = \theta_2 \). We set

\[
m(x) = \begin{cases}
 -\infty, & x \leq 0, \\
 x^2, & 0 < x < a, \\
 a^2, & a \leq x < \bar{r}, \\
 \infty, & \bar{r} \leq x,
\end{cases}
\]

\[
s(x) = \begin{cases}
 \log x, & 0 < x < a, \\
 x - a + \log a, & a \leq x \leq \bar{r}.
\end{cases}
\]

We apply the argument in the preceding section exchanging the role of \(l_1 \) and \(l_2 \).

Assume that \(a \) is absorbing or elastic. Then \(\varphi_1(x, \alpha), \varphi_2(x, \alpha), \) and \(k(\alpha) \) corresponding to (11), (12) and (13) are given as follows.

\[
\varphi_1(x, \alpha) = \begin{cases}
 \Phi_a(x, \alpha), & 0 < x \leq a, \\
 1, & a < x < \bar{r},
\end{cases}
\]

\[
\varphi_2(x, \alpha) = \begin{cases}
 -\Psi_a(x, \alpha) + (\theta_2/\theta_1)\Phi_a(x, \alpha), & 0 < x \leq a, \\
 \bar{r} - x, & a < x \leq \bar{r},
\end{cases}
\]

\[
k(\alpha) = \lim_{x \to 0} \frac{\varphi_2(x, \alpha)}{\varphi_1(x, \alpha)} = \frac{\theta_2}{\theta_1} + \frac{1}{\sqrt{2\alpha a}} \frac{I_0(\sqrt{2\alpha a})}{I_1(\sqrt{2\alpha a})}, \quad \alpha > 0.
\]

Let us fix \(\zeta \in \Lambda(\theta_1, \theta_2) := \{ \zeta \in (0, \infty) ; \theta_1 J_0(\sqrt{2\zeta a}) = \theta_2 J_1(\sqrt{2\zeta a}) \} \). Then, by means of Proposition A, there exists a positive \(\delta > 0 \) such that

\[
\sigma_0([\lambda_1, \lambda_2]) = -\lim_{\epsilon \to 0} \frac{1}{\pi} \int_{\lambda_1}^{\lambda_2} \Im \left(\frac{1}{k(-\lambda - \sqrt{-1}\epsilon)} \right) d\lambda = \frac{2\zeta}{1 + 2(\theta_2/\theta_1)^2 a^2 \zeta},
\]

for \(\zeta - \delta < \lambda_1 < \zeta < \lambda_2 < \zeta + \delta \). By means of (20) and (22), (14) is reduced to

\[
\sum_{\zeta \in \Lambda(\theta_1, \theta_2)} e^{-\zeta \lambda} \varphi_2(x, -\zeta) \varphi_a(y, -\zeta) 2\zeta / \{1 + 2(\theta_2/\theta_1)^2 a^2 \zeta\} = \frac{\pi^2}{4} \sum_{\zeta \in \Delta(0)} \zeta^2 e^{-\zeta^2/2} N_0(\zeta a)^2 J_0(\zeta x) J_0(\zeta y),
\]

which shows (6) for \(\alpha = A \) or \(L \).

Next assume that \(a \) is reflecting. the \(\psi_1, \psi_2, \) and \(h \) corresponding to (15), (16) and (17) are given as follows.

\[
\psi_1(x, \alpha) = \Phi_a(x, \alpha), \quad \psi_2(x, \alpha) = -\Psi_a(x, \alpha), \quad 0 < x \leq a,
\]

\[
h(\alpha) = \lim_{x \to 0} \frac{\varphi_2(x, \alpha)}{\varphi_1(x, \alpha)} = \frac{1}{\sqrt{2\alpha a}} \frac{I_0(\sqrt{2\alpha a})}{I_1(\sqrt{2\alpha a})}.
\]

Let us fix \(\zeta \in [0, \infty) \) such that \(\sqrt{2\zeta} J_1(\sqrt{2\zeta a}) = 0 \). By means of Proposition A, there exists a positive \(\delta > 0 \) and

\[
\sigma^0([\lambda_1, \lambda_2]) = \lim_{\epsilon \to 0} \frac{1}{\pi} \int_{\lambda_1}^{\lambda_2} \Im h(-\lambda - \sqrt{-1}\epsilon) d\lambda = \frac{1}{a^2}.
\]
for $\zeta - \delta < \lambda_1 < \zeta < \lambda_2 < \zeta + \delta$. By means of (20) and (22), (18) is reduced to
\[
\sum_{\zeta; \sqrt{\zeta} J_1((\sqrt{2}a)\zeta) = 0} \frac{e^{-t\psi_1(x, -\zeta)\psi_1(y, -\zeta)}}{a^2} = \frac{\pi^2}{4} \sum_{\zeta; J_1(\zeta) = 0} \zeta^2 e^{-\frac{\zeta^2}{2} N_1(\zeta a^2) J_0(\zeta x) J_0(\zeta y)},
\]
which shows (6) for $\alpha = R$.

4.2 The Case that $l_1 = a \in (0, \infty)$ and $l_2 = \infty$.

We prove Proposition 2. Then a is regular and the boundary condition for (3) with $l = a$, $\theta_1 = \theta_2$ and $\theta_2 = \theta_1$. We set
\[
l = a - \frac{\theta_2}{\theta_1}, \quad \tilde{r} = \infty,
\]
\[
m(x) = \begin{cases} -\infty, & x \leq \tilde{l}, \\ \frac{a^2}{2}, & \tilde{l} < x < a, \\ x^2, & a \leq x, \end{cases} \quad s(x) = \begin{cases} x - a + \log a, & \tilde{l} < x \leq a, \\ \log x, & a < x. \end{cases}
\]

Assume that a is absorbing or elastic. Then φ_1, φ_2 and k define by (11), (12) and (13) are given as follows.
\[
\varphi_1(x, \alpha) = \Phi_\alpha(x, \alpha), \quad \varphi_2(x, \alpha) = \frac{\theta_2}{\theta_1} \Phi_\alpha(x, \alpha) + \Psi_\alpha(x, \alpha), \quad a \leq x < \infty,
\]
\[
k(\alpha) = \lim_{x \uparrow \tilde{r}} \frac{\varphi_2(x, \alpha)}{\varphi_1(x, \alpha)} = \frac{\theta_2}{\theta_1} + \frac{K_0(\sqrt{2}a\alpha)}{\sqrt{2}a K_1(\sqrt{2}a \alpha)}.
\]
Therefore
\[
\sigma_0([\lambda_1, \lambda_2]) = -\lim_{\epsilon \downarrow 0} \frac{1}{\pi} \int_{\lambda_1}^{\lambda_2} \Im \left(\frac{1}{k(-\lambda - \sqrt{-1}\epsilon)} - 1 \right) d\lambda
\]
\[
= \frac{2\theta_1}{\pi^2} \int_{\lambda_1}^{\lambda_2} \frac{d\lambda}{\{\theta_1 N_0(\sqrt{2}a\lambda) + \sqrt{2}a K_0(\sqrt{2}a \lambda)\}^2},
\]
for $0 < \lambda_1 < \lambda_2 < \infty$. Noting (20) and (22) we obtain (9) for $\alpha = A$ or L.

We next assume that a is reflecting. The ψ_1, ψ_2, and h defined by (15), (16) and (17) are given as follows.
\[
\psi_1(x, \alpha) = \Phi_\alpha(x, \alpha), \quad \psi_2(x, \alpha) = \Psi_\alpha(x, \alpha), \quad a \leq x < \infty,
\]
\[
h(\alpha) = \frac{K_0(\sqrt{2}a\alpha)}{\sqrt{2}a K_1(\sqrt{2}a \alpha)}.
\]
Therefore
\[
\sigma_0([\lambda_1, \lambda_2]) = \lim_{\epsilon \downarrow 0} \frac{1}{\pi} \int_{\lambda_1}^{\lambda_2} \Im h(-\lambda - \sqrt{-1}\epsilon) d\lambda
\]
\[
= \int_{\lambda_1}^{\lambda_2} \frac{1}{2a^2 \lambda^2} \frac{1}{J_1(\sqrt{2}a \lambda)^2 + N_1(\sqrt{2}a \lambda)^2} d\lambda.
\]

Combining this with (22), we obtain (9) for $\alpha = R$.
4.3 The Case that \(l_1 = a \in (0, \infty) \) and \(l_2 = b \in (0, \infty) \).

We prove Proposition 3. Since \(a \) and \(b \) are regular, the boundary condition (3) is posed at \(a \), and (4) with \(r = b \) is posed at \(b \). We set

\[
\begin{align*}
\tilde{l} &= a - \frac{\theta_2^a}{\theta_1^a}, \\
\tilde{r} &= b + \frac{\theta_2^b}{\theta_1^b}, \\
m(x) &= \begin{cases}
-\infty, & x \leq \tilde{l}, \\
a^2, & \tilde{l} \leq x < a, \\
x^2, & a \leq x < b, \\
b^2, & b \leq x \leq \tilde{r},
\end{cases}
\end{align*}
\]

where \(\tilde{x}(x) = \begin{cases}
x - a + \log a, & \tilde{l} < x < a, \\
\log x, & a \leq x \leq b, \\
x - b + \log b, & b < x \leq \tilde{r}.
\end{cases} \)

We assume that \(a \) is absorbing or elastic. Then \(\varphi_1(x, \alpha), \varphi_2(x, \alpha) \) and \(k(\alpha) \) defined by (11), (12) and (13) are given as follows.

\[
\begin{align*}
\varphi_1(x, \alpha) &= \begin{cases}
1, & \tilde{l} \leq x < a, \\
\Phi_a(x, \alpha), & a \leq x \leq b, \\
\Phi_a(b, \alpha) + (x - b)D_a \Phi_a(b, \alpha), & b < x < \tilde{r},
\end{cases} \\
\varphi_2(x, \alpha) &= \begin{cases}
x - \tilde{l}, & \tilde{l} \leq x < a, \\
Q_a(x, \alpha) := \left(\frac{\theta_2^a}{\theta_1^a} \right) \Phi_a(x, \alpha) + \Psi_a(x, \alpha), & a \leq x < b, \\
Q_a(b, \alpha) + (x - b)D_a Q_a(b, \alpha), & b < x < \tilde{r},
\end{cases} \\
k(\alpha) &= \frac{\theta_2^a \Psi_a(b, \alpha) + \theta_2^b D_a \Psi_a(b, \alpha)}{\theta_1^a \Phi_a(b, \alpha) + \theta_2^b D_a \Phi_a(b, \alpha)}.
\end{align*}
\]

Let us fix \(\zeta \in \Lambda(\theta_1^a, \theta_2^a, \theta_1^b, \theta_2^b) := \{ \zeta \in (0, \infty) ; \theta_1^a \theta_1^b \sqrt{2\zeta} a F(\zeta; b; a) - 2\theta_1^b a b G_1(\zeta; a; b) = -\theta_1^b \theta_1^b G_0(\zeta; a; b) + \theta_1^b \sqrt{2\zeta} b F(\zeta; a; b) \} \). Then, by means of Proposition A, there exists a positive \(\delta > 0 \) such that

\[
\sigma_0([\lambda_1, \lambda_2]) = \left[-\frac{1}{2\zeta} - \left(\frac{\theta_2^a a}{\theta_1^a} \right)^2 + \frac{\{(\theta_1^a)^2 + 2\zeta (\theta_1^a)^2\} b \theta_1^a F(\zeta; a; b) - \theta_2^b \sqrt{2\zeta} a G_1(\zeta; a; b)}{2\lambda a \theta_1^2 \theta_1^2 - \theta_1^2 F(\zeta; b; a) - \theta_2^2 \sqrt{2\zeta} b G_1(\zeta; a; b)} \right]^{-1}
\]

if \(\alpha = A \) or \(L \), for \(\zeta - \delta < \lambda_1 < \zeta < \lambda_2 < \zeta + \delta \). By means of (20) and (22), we have (10) with \(\alpha = A \) or \(L \).

We next assume that \(a \) is reflecting. The \(\psi_1, \psi_2, \) and \(h \) defined by (15), (16) and (17) are given as follows.

\[
\begin{align*}
\psi_1(x, \alpha) &= \begin{cases}
\Phi_a(x, \alpha), & \tilde{l} \leq x \leq b, \\
\Phi_a(b, \alpha) + (x - b)D_a \Phi_a(b, \alpha), & b < x \leq \tilde{r},
\end{cases} \\
\psi_2(x, \alpha) &= \begin{cases}
x - \tilde{l}, & \tilde{l} \leq x < a, \\
\Psi_a(x, \alpha), & a \leq x < b, \\
\Psi_a(b, \alpha) + (x - b)D_a \Psi_a(b, \alpha), & b \leq x \leq \tilde{r},
\end{cases} \\
h(\alpha) &= \frac{\theta_1^a \Psi_a(b, \alpha) + \theta_2^b D_a \Psi_a(b, \alpha)}{\theta_1^a \Phi_a(b, \alpha) + \theta_2^b D_a \Phi_a(b, \alpha)}.
\end{align*}
\]
Let us fix $\zeta \in \Lambda(\theta_1^0, \theta_2^0) := \{ \zeta \in (0, \infty); \theta_1^0 \sqrt{2\kappa} a_F(\zeta; b; a) = 2b\kappa ab \zeta G_1(\zeta; a; b) \}$. Then, by means of Proposition A, there exists a positive $\delta > 0$ such that

$$\sigma_0([\lambda_1, \lambda_2]) = \left[-a^2 + ab \frac{\theta_1^0 \pi G_1(\zeta, a, b) + \theta_2^0 \sqrt{2\kappa} b \pi F(\zeta, b, a)}{\theta_1^0 \pi G_0(\zeta, a, b) + \theta_2^0 \sqrt{2\kappa} ab F(\zeta, a, b)} \right]^{-1},$$

for $-\delta < \lambda_1 < \zeta < \lambda_2 < \zeta + \delta$. By means of (20) and (22), we have (10) with $\alpha = R$.

5 Appendix

The following result is useful for calculations of spectrum. The proof is due to Dr. Sechiko Takahashi. We would like to thank her for suggesting improvements of our results.

Proposition A Let $k(z) : \mathbb{C} \rightarrow \mathbb{C}$ and $k(x) \in \mathbb{R}$ for $x \in \mathbb{R}$. Assume that there is a $\lambda_0 \in \mathbb{R}$ such that k is analytic in a neighborhood of λ_0, $k(\lambda_0) = 0$, and it is a zero of order 1. Then there exists a positive δ such that

$$\lim_{\gamma \downarrow 0} \int_{\lambda_0 - \delta}^{\lambda_0 + \delta} \frac{1}{k(\lambda)} d\lambda = \frac{\pi}{k'(\lambda_0)}.$$

Proof. By virtue of assumption of the proposition, there is a neighborhood U of λ_0 such that $1/k$ is a simple pole of $1/k$, and $\varphi(z) := 1/k(z) - 1/(z - \lambda_0)k'(\lambda_0)$ is analytic in U. Let us fix a $\delta > 0$ such that $[\lambda_0 - \delta, \lambda_0 + \delta] \subset U$. Further fix an $\epsilon_0 > 0$ such that

$$L_1 := \{ \lambda_0 - \delta + \sqrt{-1}\epsilon; -\epsilon_0 < \epsilon < \epsilon_0 \} \subset U,$$
$$L_2 := \{ \lambda_0 + \delta + \sqrt{-1}\epsilon; -\epsilon_0 < \epsilon < \epsilon_0 \} \subset U.$$

Since $1/k$ is analytic on L_1 and L_2, there is an $M > 0$ such that $|k(z)| \leq M$ for $z \in L_1 \cup L_2$.

For $0 < \epsilon < \epsilon_0$ and $0 < \rho < \min\{\delta, \epsilon\}$, we set

$$\gamma_1 : z(\lambda) = \lambda + \sqrt{-1}\epsilon (\lambda_0 + \delta \geq \lambda \geq \lambda_0 - \delta), \quad \gamma_2 : z(t) = \lambda - \delta + \sqrt{-1}t (\epsilon \geq t \geq -\epsilon),$$
$$\gamma_3 : z(\lambda) = \lambda - \sqrt{-1}\epsilon (\lambda_0 - \delta \leq \lambda \leq \lambda_0 + \delta), \quad \gamma_4 : z(t) = \lambda - \delta + \sqrt{-1}t (-\epsilon \leq t \leq \epsilon),$$
$$\gamma : z = \rho e^{\sqrt{-1}\theta} \quad 0 \leq \theta \leq 2\pi \quad (\rho \leq \delta, \epsilon).$$

By virtue of Cauchy's integral theorem,

$$\sum_{i=1}^{4} \int_{\gamma_i} \frac{1}{k(z)} dz = \int_{\gamma} \frac{1}{k(z)} dz. \tag{23}$$

We set $I_i(\epsilon) = \int_{\gamma_i} \frac{1}{k(z)} dz$, $i = 1, 2, 3, 4$. Then

$$I_1(\epsilon) = \int_{\gamma_1} \frac{1}{k(z)} dz = \int_{\lambda_0 - \delta}^{\lambda_0 + \delta} \frac{1}{k(\lambda)} d\lambda = \int_{\lambda_0 - \delta}^{\lambda_0 + \delta} \frac{1}{k(\lambda - \sqrt{-1}\epsilon)} d\lambda,$$
$$I_2(\epsilon) = \int_{\gamma_2} \frac{1}{k(z)} dz = \int_{\lambda_0 - \delta}^{\lambda_0 + \delta} \frac{1}{k(\lambda + \sqrt{-1}\epsilon)} d\lambda,$$
$$I_3(\epsilon) = \int_{\gamma_3} \frac{1}{k(z)} dz = \int_{\lambda_0 - \delta}^{\lambda_0 + \delta} \frac{1}{k(\lambda - \sqrt{-1}\epsilon)} d\lambda,$$
$$I_4(\epsilon) = \int_{\gamma_4} \frac{1}{k(z)} dz = \int_{\lambda_0 - \delta}^{\lambda_0 + \delta} \frac{1}{k(\lambda + \sqrt{-1}\epsilon)} d\lambda.$$
Since $k(z)$ is real for $z \in \mathbb{R}$, $k(z) = k(\bar{z})$ for $z, \bar{z} \in U$. Thus

$$I_1(\epsilon) + I_3(\epsilon) = \int_{\lambda_0 - \delta}^{\lambda_0 + \delta} \left\{ \frac{1}{k(\lambda - \sqrt{-1}\epsilon)} - \frac{1}{k(\lambda + \sqrt{-1}\epsilon)} \right\} d\lambda$$

$$= 2\sqrt{-1} \int_{\lambda_0 - \delta}^{\lambda_0 + \delta} \frac{1}{k(\lambda - \sqrt{-1}\epsilon)} d\lambda. \tag{24}$$

We also note that

$$|I_2(\epsilon)| = \left| \int_{\gamma_2} \frac{1}{k(z)} dz \right| = \left| -\sqrt{-1} \int_{-\epsilon}^{\epsilon} \frac{1}{k(\lambda_0 - \delta + it)} dt \right|$$

$$\leq \int_{-\epsilon}^{\epsilon} \left| \frac{1}{k(\lambda_0 - \delta + \sqrt{-1}t)} \right| dt$$

$$\leq 2\epsilon M, \tag{26}$$

and in the same way as above,

$$|I_4(\epsilon)| \leq 2\epsilon M. \tag{27}$$

On the other hand, by virtue of Cauchy's integral theorem,

$$\int_{\gamma} \frac{1}{k(z)} dz = \int_{\gamma} \frac{1}{(z - \lambda_0)k'(\lambda_0)} dz + \int_{\gamma} \varphi(z) dz$$

$$= \int_{\gamma} \frac{1}{(z - \lambda_0)k'(\lambda_0)} dz = 2\pi \sqrt{-1}/k'(\lambda_0). \tag{28}$$

Combining this with (23), (24), (26), (27) and (28), we arrive at

$$\lim_{\epsilon \downarrow 0} \int_{\lambda_0 - \delta}^{\lambda_0 + \delta} \Re \frac{1}{k(\lambda - \sqrt{-1}\epsilon)} d\lambda = \frac{\pi}{k'(\lambda_0)}. \tag{29}$$

References

Elementary solutions of Bessel processes with boundary conditions

TAKEMURA Tomoko

We consider elementary solutions of 2 dimensional Bessel processes on finite or infinite intervals, where some boundary conditions are posed at finite end points. The elementary solution of Bessel process on the interval $(0, \infty)$ is well known. We give explicit spectral representations of elementary solutions of Bessel processes on intervals $(0, a)$, (a, b), and (b, ∞) with various boundary conditions at a or b, where $0 < a < b < \infty$. Our results imply that the elementary solution corresponding to (b, ∞) converges to that corresponding to $(0, \infty)$ as $b \to 0$, and that corresponding to (a, b) converges to that corresponding to $(0, b)$ as $a \to 0$.